If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-10w+18=0
a = 1; b = -10; c = +18;
Δ = b2-4ac
Δ = -102-4·1·18
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{7}}{2*1}=\frac{10-2\sqrt{7}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{7}}{2*1}=\frac{10+2\sqrt{7}}{2} $
| 2(3x-7)=19 | | 3n+n=5+7 | | 3n+5n=5+7 | | -12=-3e | | 5x+15Y=3 | | (650/100)*x=40 | | 40=(650/100)*x | | (6-4)/(7-c)=3/4 | | (-4-2g)/(-g-3)=-3 | | 4y-8=2y-16 | | p+12=45 | | 35x2+2835x=0 | | s+–191=705 | | 9x⁴-8x²-1=0 | | x+x+5=22 | | -7=1.4k | | (0.58-x)/x=0.3 | | (D^4-5D^2+4)*y=0 | | –2(5y–6)=3y–8 | | 4(x+¹)=-28 | | 8(z-10)=40 | | +5(4×+3y=10) | | (0.58-x)/x=0.5 | | 12x-16=8x+2 | | 8x+0.09876.8=8 | | 2x+4.996.0=8 | | 29747.2=x+(x*12/100) | | m+–152=–518 | | 26=j/17 | | 6x=10x/2-x-1 | | 7y+12=70 | | x/15=135 |